山西省朔州市平鲁区李林中学 刘娟娟数学是研究现实世界中数量关系和空间形成的一门科学。随着科学技术的不断发展,数学也从原始形态的数量关系向抽象化的数量关系发展。在发展的过程中,不仅建立了严密的理论体系,而且形成了一整套的数学思想方法。本文结合有关的例题,对数学中常用的几种思想方法作一番探讨。一、数形结合的思想方法数形结合思想方法就是把抽象的数学符号语言和直观的几何图形联系起来,把抽象思维与形象思维相结合,通过“以形助数” 、“以数解形” ,使抽象问题具体化,复杂问题简单化,从而达到解答目的。数形结合应用甚广,不仅在解选择题、填空题中显示它的优越性,而且在解某些抽象数学问题时也起到事半功倍的效果。“以数解形” 是解析几何的主线,“以形助数” 是数形结合的研究重点。如何“以数转形”是数形结合的关键,图解法是数形结合的具体体现。数形结合是近年中、高考重点考查的思想方法之一。下面我们结合下面的例子作简单的分析:例1. 已知 0<a<1,则方程的实根个数为( )A. 1个 B. 2个 C. 3个 D. 1个或2个或3个分析: 判断方程根的个数就是判断图像两个函数图像,易知两图象只有两个交点,故方程有2个实根,选(B)。二、函数思想方法函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。这是一种运动变化和相依关系,以一种状态确定地刻划另一种状态,把它们过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是知识和方法在反复学习与运用中抽象出来的,且带有观念性的指导方法。函数的思想就是用运动和变化的观点,分析和研究数学问题。具体来说,即先构造函数,把给定问题转化为研究函数的性质(单调性、奇偶性、周期性、图象的交点个数、最值、极值等)问题,研究后得出所需要的结论。上面的例1和例2也可以说阐述了这个观点。而函数方程思想就是将数学问题转化为方程或方程组问题,通过解方程(组)或者运用方程的性质来分析、转化问题,使问题得以解决。必有两个不相等的实根。分析:此题若用常规解法,求出判别式△是一个关于a 的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数,要证明命题成立,只需证明函数的图象与 轴有两个交点,由于它的开口向上,只要找到一个实数,使即可。比如。故函数的图象与 轴有两个交点,因此命题成立。三、转化思想人们在长期的实践中,积累了丰富的经验,许多数学问题的解决形成固定的方法模式和程序,我们把这种既定方法和程序的问题称为规范问题。运用某些方法或手段,把一个陌生的、复杂的数学问题转化归结为所熟知的、简单的规范性数学问题来解决的思想方法称为转化思想方法。转化的原则是化陌生为熟知,化繁杂为简单,且转化后的问题与原问题等价。数形结合的思想方法和函数的思想方法都是转化思想方法的具体表现。数学中转化的途径是多样的,有正面与反面的相互转化,有数与形的相互转化,有客与主的相互转化,有特殊与一般的相互转化,有升维与降维的相互转化等,总之是要将较难解决的问题转化为易解决的基本问题。提倡立体思维,善于从多角度、多方位和多层次去审视问题,另辟蹊径是我们解决问题的最好方法。1.求代数式的值这类问题经常是给出一个已知方程或代数式的值,去求另外一个代数式的值,解决的方法是从已知条件出发,将已知条件向所要求的结论转化或者将所要求的目标向已知条件转化,从而达到解决问题的目的。本例通过一个命题的题设与结论的转化,使他们之间的关系进一步明朗化,从而解决了问题。2.将函数思想转化为方程(组)问题通过以上几例,我们可以看到解数学问题的时候,如果能恰当合理地把问题转化,则能启迪思维,简洁巧妙地解决问题,同时也能加强学生的数学思想方法的培养。总之,上述的三种数学思想方法(即数形结合、函数思想和转化思想),在解决数学问题中具有举足轻重的作用,它不仅可以把一些直接无法解决或陌生的问题转化为易于解决,熟悉的问题来解,而且可以培养学生思维的发散性,灵活性,敏捷性。因此,数学教师在教学工作中,应当长期不断地夯实学生的数学基础,训练学生的基本解题技能,加强培养学生的数学思想思维。只有这样,才能使学生得心应手地运用数学思想方法,也只有这样,往往使运算简捷,推理机敏严密,同时大大提高了学生分析数学问题和解决数学问题的能力。
高中数学四种思想方法
第一:函数与方程思想
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
第二:数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4)有分有合,先分后合,是分类整合思想的本质属性
(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性
第四:化归与转化思想
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
以上就是高中数学教学中的数学思想,在我们的教学过程中,要注意引导学生多向这些思想上靠,灵活运用,在教与学的过程中得以体现和实践.
数学常用的数学思想方法有哪些
学习一门知识,究其核心,主要是学其思想和 方法 ,这是学习的精髓。学数学亦如此,分学数学思想和数学方法。下面是我为大家整理的关于高中数学四种思想方法,希望对您有所帮助。欢迎大家阅读参考学习!
1高中数学四种思想方法
学习一门知识,究其核心,主要是学其思想和方法,这是学习的精髓。学数学亦如此,分学数学思想和数学方法。
2数形结合思想
数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使 抽象思维 和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.
应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数 列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.
3转化与化归思想
化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转 化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正.
应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有: 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平 面相 互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化
4分类与整合思想
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分类标准;③按所分类别进行讨论;④归纳小结、综合得出结论。分类讨论问题的关键是化整为零,通过局部讨论以降低难度。常见的类型: 由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
5函数方程思想
函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种 思维方式 ,是很重要的数学思想。函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;应用函数思想解题,确立变量之间的函数关系是一关键步骤
大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。
高中数学四种思想方法相关 文章 :
1. 高中数学思想与逻辑:11种数学思想方法总结与例题讲解
2. 高中数学思想方法
3. 高中数学学习的思想和法则
4. 高中数学四大学习方法
5. 高中数学规律和方法
6. 高中数学巧妙方法
7. 高中数学常考题型答题技巧与方法及顺口溜
8. 高考文科数学的思想方法有哪些
9. 高中数学21种解题方法与技巧
10. 高中数学大题的解题技巧及解题思想
数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。
1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.
6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。
7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,
扩展资料:
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。
参考资料:
百度百科-数学思想本文来自作者[朋会]投稿,不代表巅峰号立场,如若转载,请注明出处:https://www.gbdianzi.net/gb/20020.html
 
 
评论列表(4条)
我是巅峰号的签约作者“朋会”!
希望本篇文章《中学数学中几种常用的数学思想方法》能对你有所帮助!
本站[巅峰号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:山西省朔州市平鲁区李林中学 刘娟娟数学是研究现实世界中数量关系和空间形成的一门科学。随着科学技术的不断发展,数学也从原始形态的数量关系向抽象化的数量关系发展。在发展的过程中,不...