百鸡问题
《张邱建算经》中,是原书卷下第38题,也是全书的最后一题:「今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?答曰:鸡翁四,值钱二十;鸡母十八,值钱五十四;鸡鶵七十八,值钱二十六。又答:鸡翁八,值钱四十;鸡母十一,值钱三十三,鸡鶵八十一,值钱二十七。又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十四,值钱二十八。」该问题导致三元不定方程组,其重要之处在于开创「一问多答」的先例,这是过去中国古算书中所没有的。
秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。
物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?"
这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?
变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。
这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。
这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣得多。
我们换一个例子;韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?
这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。
如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。
例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。
要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。
最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。
为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+ 15m,分别把m=1,2,…代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。
我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:
三人同行七十稀,
五树梅花甘一枝,
七子团圆正半月,
除百零五便得知。
"正半月"暗指15。"除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。
按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:
70×2+21×3+15×4=263,
263=2×105+53,
所以,这队士兵至少有53人。
在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:
70是5与7的倍数,而用3除余1;
21是3与7的倍数,而用5除余1;
15是3与5的倍数,而用7除余1。
因而
70×2是5与7的倍数,用3除余2;
21×3是3与7的倍数,用5除余3;
15×4是3与5的倍数,用7除余4。
如果一个数除以a余数为b,那么给这个数加上a的一个倍数以后再除以a,余数仍然是b。所以,把70×2、21×3与15×4都加起来所得的结果能同时满足"用3除余2、用5除余3、用7除余4"的要求。一般地,
70m+21n+15k (1≤m<3, 1≤n<5,1≤k<7)
能同时满足"用3除余m 、用5除余n 、用7除余k"的要求。除以105取余数,是为了求合乎题意的最小正整数解。
我们已经知道了70、21、15这三个数的性质和用处,那么,是怎么把它们找到的呢?要是换了一个题目,三个除数不再是3、5、7,应该怎样去求出类似的有用的数呢?
为了求出是5与7的倍数而用3除余1的数,我们看看5与7的最小公倍数是否合乎要求。5与7的最小公倍数是5×7=35,35除以3余2,35的2倍除以3余2,35的2倍除以3就能余1了,于是我们得到了"三人同行七十稀"。
为了求出是3与7的倍数而用5除余1的数,我们看看3与7的最小公倍数是否合乎要求。3与7的最小公倍数是3×7=21,21除以5恰好余1,于是我们得到了"五树梅花甘一枝"。
为了求出是3与5的倍数而用7除余1的数,我们看看3与5的最小公倍数是否合乎要求。3与5的最小公倍数是3×5=15,15除以7恰好余1,因而我们得到了"七子团圆正半月"。
3、5、7的最小公倍数是105,所以"除百零五便得知"。
例如:试求一数,使之用4除余3,用5除余2,用7除余5。
解:我们先求是5与7的倍数而用4除余1的数;5与7的最小公倍数是5×7=35,35除以4余3,3×3除以4余1,因而35×3=105除以4余1,105是5与7的倍数而用4除余1的数。
我们再求4与7的倍数而用5除余1的数;4与7的最小公倍数是4×7=28,28除以5余3,3×7除以5余1,因而28×7=196除余5余1,所以196是4与7的倍数而用5除余1的数。
最后求的是4与5的倍数而用7除余1的数:4与5的最小公倍数是4×5=20,20除以7余6,6×6除以7余1,因而20×6=120除以7余1,所以120是4与5的倍数而用7除余1的数。
利用105、196、120这三个数可以求出符合题目要求的解:
105×3+196×2+120×5=1307。
由于4、5、7的最小公倍数是4×5×7=140,1307大于140,所以1307不是合乎题目要求的最小的解。用1037除以140得到的余数是47,47是合乎题目的最小的正整数解。
一般地,
105m+196n+120k (1≤m<4,1≤n<5,1≤k<7)
是用4除余m,用5除余n,用7除余k的数(105m+196n+120k)除以140所得的余数是满足上面三个条件的最小的正数。
上面我们是为了写出105m+196n+120k这个一般表达式才求出了105这个特征数。如果只是为了解答我们这个具体的例题,由于5×7=35既是5与7的倍数除以4又余3,就不必求出105再乘以3了。
35+196×2+120×5=1027
就是符合题意的数。
1027=7×140+47,
由此也可以得出符合题意的最小正整数解47。
《算法统宗》中把在以3、5、7为除数"物不知其数"问题中起重要作用的70、21、15这几个特征数用几句口诀表达出来了,我们也可以把在以4、5、7为除数的问题中起重要作用的105、196、120这几个特征数编为口诀。留给读者自己去编吧。
凡是三个除数两两互质的情况,都可以用上面的方法求解。
上面的方法所依据的理论,在中国称之为孙子定理,国外的书籍称之为中国剩余定理。
求古代数学问题。
东汉时候,有个人名叫孙敬,是著名的政治家。他年轻时勤奋好学,经常关起门,独自一人不停地读书。 每天从早到晚读书,常常是废寝忘食。读书时间长,劳累了,还不休息。时间久了,疲倦得直打瞌睡。 他怕影响自己的读书学习,就想出了一个特别的办法。古时候,男子的头发很长。他就找一根绳子, 一头牢牢的绑在房梁上。当他读书疲劳时打盹了,头一低,绳子就会牵住头发,这样会把头皮扯痛了, 马上就清醒了,再继续读书学习。 这就时孙敬悬梁的故事。
战国时期,有一个人名叫苏秦,也是出名的政治家。在年轻时,由于学问不多不深,曾到好多地方做事, 都不受重视。回家后,家人对他也很冷淡,瞧不起他。这对他的刺激很大。所以,他下定决心,发奋读书。 他常常读书到深夜,很疲倦,常打盹,直想睡觉。他也想出了一个方法,准备一把锥子,一打瞌睡, 就用锥子往自己的大腿上刺一下。这样,猛然间感到疼痛,使自己清醒起来,再坚持读书。 这就使苏秦"刺股"的故事。
〔注〕:从孙敬和苏秦两个人读书的故事引申出"悬梁刺股"这句成语,用来比喻发奋读书,刻苦学习的精神。 他们这种努力学习的精神是好的,但是他们这种发奋学习的方式方法不必效仿。
孔子不耻下问:
春秋时代,孔子被人们尊为“圣人”,他有弟子二千,大家都向他请教学问。他的《论语》是千百年来的传世之作。
孔子学问渊博,可是仍虚心向别人求教。有一次,他到太庙去祭祖。他一进太庙,就觉得新奇,向别人问这问那。有人笑道:“孔子学问出众,为什么还要问?”孔子听了说:“每事必问,有什么不好?”他的弟子问他:“孔圉死后,为什么叫他孔文子?”孔子道:“聪明好学,不耻下问,才配叫‘文’。”弟子们想:“老师常向别人求教,也并不以为耻辱呀!”
虚心好学,肯向一切人,包括向比自己地位低的人学习,叫“不耻下问”
1、百鸡问题:今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?《张邱建算经》
?答曰:鸡翁四,值钱二十;鸡母十八,值钱五十四;鸡鶵七十八,值钱二十六;
?又答:鸡翁八,值钱四十;鸡母十一,值钱三十三,鸡鶵八十一,值钱二十七;
?又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十四,值钱二十八。
2、物不知其数:今有物不知其数,三三数之二,五五数之三,七七数之二。问物几何?《孙子算经》
? 答曰:三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。
3、谷束问题:上等谷3束,中等谷2束,下等谷1束共39斗。上等谷2束,中等谷3束,下等谷1束,共34斗。上等谷1束,中等谷2束,下等谷3束,共26斗,求上、中、下三等谷每束各是几斗?《九章算术》
? 答曰:上等谷每束9.25斗,中等谷每束4.25斗,下等谷每束2.75斗。
4、及时梨果:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。问:梨果多少价几何?《四元玉鉴》
答曰:梨有657个,共803文钱,果有343个,共196文钱。
5、和尚分馒头:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?《直指算法统宗》
答曰:大和尚25,小和尚75。
中国是世界文明古国之一。数学是中国古代科学中一门重要学科,其发展源远流长,成就辉煌。《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间,其它的有《九章算术》《孙子算经》、《夏侯阳算经》、《海岛算经》、《张丘建算经》等数学著作。
本文来自作者[窦景岩]投稿,不代表巅峰号立场,如若转载,请注明出处:https://www.gbdianzi.net/gb/12561.html
评论列表(4条)
我是巅峰号的签约作者“窦景岩”!
希望本篇文章《求几道中国古代数学问题》能对你有所帮助!
本站[巅峰号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:百鸡问题《张邱建算经》中,是原书卷下第38题,也是全书的最后一题:「今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?答曰:鸡翁四,值钱...